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Histogram Equalization

Our objective is to find the probability density function p[r ] which maximizes

−
∫ rmax

0

drp[r ] log2 p[r ] (1)

subject to the constraint ∫ rmax

0

drp[r ] = 1 (2)
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Lagrange Multipliers

How do we use Lagrange multipliers here?

L(p, λ) = −
∫ rmax

0

drp[r ] log2 p[r ] + λ · (
∫ rmax

0

drp[r ]− 1) (3)

Note that the function L defined in (0.3) is a functional (a function on the function space)

∂pL(p, λ) = 0 ⇔ lim
ϵ→0

L(p + ϵh, λ)− L(p, λ)
ϵ

= 0 (4)

∂λL(p, λ) = 0 ⇔
∫ rmax

0

drp[r ] = 1 (5)

where h is a function defined on [0, rmax ]. (Calculus of variations)
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Continued

Then,

−
∫ rmax

0

dr lim
ϵ→0

(p[r ] + ϵh[r ]) log2(p[r ] + ϵh[r ])− p[r ] log2 p[r ]

ϵ
(6)

+λ

∫ rmax

0

dr lim
ϵ→0

p[r ] + ϵh[r ]− p[r ]

ϵ
= 0 (7)

−
∫ rmax

0

drh[r ](log2 p[r ] +
1

ln 2
+ λ) = 0 (8)

Since this should hold for any function h[r ], the maximizer p[r ] = constant.

Since the uniform pdf also satisfies (0.5),

p[r ] =
1

rmax
(9)
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Entropy Maximization

Suppose the stimulus s invokes response r = f (s). For small ∆s, we have

p[s]∆s =
|f (s +∆s)− f (s)|

rmax
(10)

The solution to (0.9) for a monotonically increasing response is

f (s) = rmax

∫ s

smin

ds ′p[s ′] (11)

This is the maximum-entropy encoding for the constraint r ≤ rmax
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Other Possible Constraints

If the average firing rate is constrained to a fixed value, the maximizing probability density

function is exponential. If the variance is also constrained, the maximizing pdf becomes a

Gaussian.

We want to maximize

H = −
∫ ∞

0

drp[r ] log2 p[r ] (12)

subject to

∫ ∞

0

dr rp[r ] = ravg (13)

∫ ∞

0

drp[r ] = 1 (14)
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Continued

Using similar methods,

L(p, λ1, λ2) = −
∫ ∞

0

drp[r ] log2 p[r ] (15)

+ λ1(

∫ ∞

0

dr rp[r ]− ravg ) (16)

+ λ2(

∫ ∞

0

drp[r ]− 1) (17)

Then, for any function h,

−
∫ ∞

0

drh[r ](log2 p[r ] +
1

ln 2
+ λ1r + λ2) = 0 (18)

Hence, p[r ] = eAr+B for some constants A,B that satisfy the other two constraints.
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Variance Constraint gives a Gaussian

If a third constraint is imposed,

∫ ∞

0

dr (r − ravg )
2p[r ] = rvar (19)

we get a Gaussian.
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Quiz

Problem 1. We want to maximize

H = −
∫ ∞

0

drp[r ] log2 p[r ]

subject to

∫ ∞

0

drp[r ] = 1

Show that if the average firing rate is constrained to a fixed value ravg , the maximizing pdf is

exponential.

Problem 2. In Problem 1, show that if the variance is also fixed to rvar , the maximizing

probability density function becomes a Gaussian. Find the probability density function p[r ].
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Application to Retinal Ganglion Cell Receptive Fields

We estimate the firing rate of a neuron in response to a particular image by,

rest = r0 +

∫ ∞

0

dτD(τ)s(t − τ) = r0 + L(t) (20)

The integral term is the linear estimate L, which represents a weighted sum of the stimulus

accros time and space.

L(t) =

∫ ∞

0

dτ

∫
d−→x D(−→x , τ)s(−→x , t − τ) (21)

Assuming the space-time receptive field D(−→x , t) is separable, we can rewrite L(t) = LsLt(t)

where

Ls =

∫
d−→x Ds(

−→x )ss(
−→x ) (22)

Lt(t) =

∫ ∞

0

dτDt(τ)st(t − τ) (23)
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Spatial Receptive Fields of Retinal Ganglion Cells

We consider an array of retinal ganglion cells. We assume that the statistics of the input are

translation-invariant. This means that input from a ball on my left is equivalent to when ball is

moved to my right. Hence, the kernel Ds is only affected by −→a . −→a denotes the center point of

the receptive field of a retinal ganglion cell.

Ls(
−→a ) =

∫
d−→x Ds(

−→x −−→a )ss(−→x ) (24)

When we consider many neurons, the array of vectors −→ai may fill the receptive field quite

densely. In this case, we can treat −→a as a continuous variable and integrate L(−→a ) over −→a .
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Making the Problem Easier (Solvable)

r = (r1, r2, . . . , rN)

When maximizing entropy, exact factorization and probability equalization are difficult to

achieve. Instead we require a weaker condition:

< ri >=< r > and < (ri− < r >)2 >= σ2
r (25)

(25) is a necessary condition for individual response pdfs being equal. Furthermore, assume

(26) for independence.

Qij =

∫
drp[r ](ri− < r >)(rj− < r >) = σ2

r δij (26)

Finding a distribution that satisfies (25), (26) is usually tactible. We apply this method to find

the whitening filter.

12



The Whitening Filter

The continuous analog of (26) gives

QLL(
−→a ,

−→
b ) = σ2

Lδ(
−→a −

−→
b ) (27)

Where the correlation function is defined as

QLL(
−→a ,

−→
b ) :=< Ls(

−→a ), Ls(
−→
b ) >=

∫
d−→x d−→y Ds(

−→x −−→a )Ds(
−→y −−→a ) < s(−→x ), s(−→y ) > (28)

Note that in (28), the term < s(−→x ), s(−→y ) > is actually a function of −→x −−→y (Why?) We

write it as

Qss(
−→x −−→y ) =< s(−→x ), s(−→y ) > (29)
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Finding the Optimal Filter Ds

We can solve (28) for Ds by expressing Ds ,Qss in terms of their inverse Fourier transforms

D̃s , Q̃ss . If the inverse Fourier transform of f is f̃ , we can recover the original function by the

applying the Fourier transform

f (ξ) =

∫ ∞

−∞
f̃ (x) · e−2πiξxdx (30)

Since Ds ,Qss are functions on R2, we apply (30) on both dimensions. From (27), we find

|D̃s(κ⃗)| =
σL√
Q̃ss(κ⃗)

(31)

Therefore, the output of the optimal filter has a power spectrum (power as a function of

frequency) Q̃ss(κ⃗)|D̃s(κ⃗)|2 independent of the spatial frequency κ⃗. This is like white noise.

That is why (31) is called a whitening filter. Also, the filter is not unique - it just needs to

satisfy (31).
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Power Spectrum

Energy spectral density describes how the energy of a signal is distributed with frequency.

Here, energy E of a signal x(t) is defined as

E :=

∫ ∞

−∞
|x(t)|2dt

From Parseval’s Theorem, ∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|x̂(ω)|2dω

where x̂(ω) is the Fourier transform of x(t). (In general, no physical power is actually involved)

The power spectrum is given by

P = lim
T→∞

1

T

∫ ∞

−∞
|x(t)k[−T/2,T/2]|2dt
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Optical Modulation Transfer Function

Measurements reflect that Q̃ss(κ⃗) ∝ 1/|κ⃗|2. Also, an additional factor exp(−α|κ⃗|) must be

included to account for the filtering introduced by the optics of the eye (the optical modulation

transfer function). As a result,

Q̃ss(κ⃗) ∝
exp(−α|κ⃗|)
|κ⃗|2 + κ2

0

Then, substituting in (31), we obtain the result that |D̃s(κ⃗)| is predicted to grow exponentially

for large |κ⃗|. What does this imply? Whitening filters maximize entropy by equalizing the

distribution of response power over the entire spatial frequency range. High spatial frequency

components of images are relatively rare in natural scenes and, even if they occur, are greatly

attenuated by the eye. The whitening filter compensates for this by boosting the responses to

high spatial frequencies.
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The Problem with this Strategy

Real inputs to retinal ganglion cells involve a mixture of true signal and noise coming from

biophysical sources in the retina. At high spatial frequencies, for which the true signal is weak,

inputs to retinal ganglion cells are likely to be dominated by noise, especially in low-light

conditions. Boosting the amplitude of this noise-dominated input and transmitting it to the

brain is not an efficient visual encoding strategy.

Why did this problem occur? And how do we resolve it?

Because no distinction has been made between the entropy coming from true signals and that

coming from noise. To correct this problem, we should maximize the information transmitted

by the retinal ganglion cells about natural scenes, rather than maximize the entropy. We will

follow an approximate procedure that prefilters the input to eliminate as much noise as

possible, and then uses the results of this section to maximize the entropy of a linear filter

acting on the prefiltered input signal.
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Filtering Input Noise

Suppose the visual stimulus is the sum of true stimulus and a noise term (a distrotion). We

express the Fourier transform of the linear kernel D̃ as a product of a noise-eliminating filter,

D̃η, and the whitening filter from (31), D̃w .

D̃s(κ⃗) = D̃η(κ⃗)D̃w (κ⃗) (32)

How do we determine the form of the noise filter? We choose the optimal kernel that makes

the total input as close to the true signal as possible. The solution to this problem utilizes

functional derivatives. The answer: the Fourier transform of the optimal filter is the Fourier

transform of the cross-correlation between the quantity being filtered and the quantity being

approximated divided by the Fourier transform of the autocorrelation of the quantity being

filtered.
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We assume that the signal and noise terms are uncorrelated, so < ss(x⃗)η(y⃗) >= 0. The

relevant cross-correlation for this problem is

< (ss(x⃗) + η(x⃗)) · ss(y⃗) >= Qss(x⃗ − y⃗) (33)

and the autocorrelation is

< (ss(x⃗) + η(x⃗))(ss(y⃗) + η(y⃗)) >= Qss(x⃗ − y⃗) + Qηη(x⃗ − y⃗) (34)

Here, Qss ,Qηη are the stimulus and noise autocorrelation functions, respectively. These results

imply that the optimal noise filter is real and given by

D̃η(κ⃗) =
Q̃ss(κ⃗)

Q̃ss(κ⃗) + Q̃ηη(κ⃗)
(35)
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The Optimal Kernel

By design, we may approximate D̃w using (31) to get

|D̃s(κ⃗)| ∝
σL

√
Q̃ss(κ⃗)

Q̃ss(κ⃗) + Q̃ηη(κ⃗)
(36)

(Computation) We want to minimize an expression of the form,

Error =
1

T

∫ T

0

dt(r0 +

∫ ∞

0

dτD(τ)s(t − τ)− r(t))2

Although I have not tried the calculations yet, this is another potential quiz problem.
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Receptive Field Properties Predicted by our Caclulations

Calculations, we mean by entropy maximization and noise suppression of responses to natural

images.

The resulting function Ds(x⃗) is radially symmetric, so it only depends on |x⃗ |. Under low noise

conditions (solid lines in figure 4.3), the linear kernel has a bandpass character and the

predicted receptive field has a center-surround structure, which matches the retinal ganglion

receptive fields shown in chapter 2.
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Continued

This structure eliminates one major source of redundancy in natural scenes: the strong

similarity of neighboring inputs owing to the predominance of low spatial frequencies in

images.

When the noise level is high (dashed lines in figure 4.3), the structure of the optimal receptive

field is different. In spatial frequency terms, the filter is now low-pass, and the receptive

field loses its surround. This structure averages over neighboring pixels to extract the true

signal obscured by the uncorrelated noise. In the retina, we expect the signal-to-noise ratio to

be controlled by the level of ambient light, with low levels of illumination corresponding to the

high-noise case. The predicted change in the receptive fields at low illumination (high noise)

matches what actually happens in the retina. At low light levels, circuitry changes within the

retina remove the opposing surrounds from retinal ganglion cell receptive fields.
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Temporal Processing

Natural images tend to change relatively slowly over time. This means that there is substantial

redundancy in the succession of natural images, suggesting an opportunity for efficient

temporal filtering to complement efficient spatial filtering.

Finding the optimal filter takes us through analogous, though lower dimensional, steps:

< Lt(t)Lt(t
′) >= σ2

Lδ(t − t ′) (37)

(37) is the equation for decorrelation and variance equalization. We take the same steps by

expressing the filter Dt(τ) by the Fourier transform of D̃t(ω). Then, analogous to (36), we get

|D̃t(ω)| ∝
σL

√
Q̃ss(ω)

Q̃ss(ω) + Q̃ηη(ω)
(38)
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Optimal Coding

Dong and Atick (1995) determined that the temporal power spectrum has the form,

Q̃ss(ω) ∝
1

ω2 + ω2
0

(39)

To determine the temporal kernel, we require it to be causal (Dt(τ) = 0 for τ < 0) and impose

a technical condition known as minimum phase, which assures that the output changes as

rapidly as possible when the stimulus varies.
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